Skip to content

valmi-io/value-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Value Python SDK

PyPI version CI Python Versions License: MIT

Python SDK to track AI agents with Value actions and auto-instrument LLM calls (Gemini, LangChain).

Features

  • Value Actions: Track agent behavior using action_context with user_id and anonymous_id, send custom actions via ctx.send()
  • Auto-Instrumentation: Automatically capture LLM calls from Gemini and LangChain with zero code changes
  • OpenTelemetry-Based: Built on OpenTelemetry for standardized, vendor-neutral observability

Installation

Basic Installation

Install the core SDK without auto-instrumentation dependencies:

pip install value-python

With Google GenAI Auto-Instrumentation

Install with Google Generative AI (Gemini) auto-instrumentation support:

pip install value-python[genai]

With LangChain Auto-Instrumentation

Install with LangChain auto-instrumentation support:

pip install value-python[langchain]

With All Auto-Instrumentation Libraries

Install with all supported auto-instrumentation libraries:

pip install value-python[all]

Multiple Extras

You can also install multiple extras:

pip install value-python[genai,langchain]

Supported Platforms

  • Python: 3.9, 3.10, 3.11, 3.12, 3.13
  • Operating Systems: Linux, macOS, Windows

Quick Start

Basic Usage

import asyncio
from value import initialize_async

async def main():
    # agent_secret is required
    client = await initialize_async(agent_secret="your-agent-secret")

    async def process_data(data: str) -> str:
        print(f"Processing data: {data}")
        await asyncio.sleep(0.5)
        result = data.upper()

        with client.action_context(user_id="user123", anonymous_id="anon456") as ctx:
            ctx.send(
                action_name="transform_data",
                **{"value.action.description": f"Transformed data from {len(data)} to {len(result)} characters"}
            )
        return result

    result = await process_data("hello async world")
    print(f"Result: {result}")

asyncio.run(main())

Synchronous Usage

from value import initialize_sync

# agent_secret is required
client = initialize_sync(agent_secret="your-agent-secret")

with client.action_context(user_id="user123", anonymous_id="anon456") as ctx:
    # Your code here
    ctx.send(action_name="my_action", **{"custom.attribute": "value"})

Auto-Instrumentation

Enable automatic tracing for supported AI libraries:

from value import initialize_sync, auto_instrument

# Initialize the client with agent_secret
client = initialize_sync(agent_secret="your-agent-secret")

# Auto-instrument specific libraries
auto_instrument(["gemini", "langchain"])

# Or auto-instrument all available libraries
auto_instrument()

Google GenAI Example

from value import initialize_sync, auto_instrument
from google import genai

# Initialize Value client with agent_secret and auto-instrument
client = initialize_sync(agent_secret="your-agent-secret")
auto_instrument(["gemini"])

# Use Gemini as usual - traces are automatically captured
gemini_client = genai.Client(api_key="your-api-key")
response = gemini_client.models.generate_content(
    model="gemini-2.5-flash",
    contents=["Write a poem about tracing"]
)

print(response.text)

Configuration

The agent_secret is passed directly to initialize_sync() or initialize_async(). Additional configuration can be set using environment variables:

Variable Description Default
VALUE_OTEL_ENDPOINT OpenTelemetry collector endpoint http://localhost:4317
VALUE_BACKEND_URL Value Control Plane backend URL Required
VALUE_SERVICE_NAME Service name for OpenTelemetry resource value-control-agent
VALUE_CONSOLE_EXPORT Enable console span exporter for debugging false

Supported Auto-Instrumentation Libraries

Library Extra Instrumentor
Google Generative AI (Gemini) genai opentelemetry-instrumentation-google-generativeai
LangChain langchain opentelemetry-instrumentation-langchain

API Reference

Core Functions

  • initialize_sync(agent_secret) - Initialize a synchronous Value client
  • initialize_async(agent_secret) - Initialize an asynchronous Value client
  • auto_instrument(libraries=None) - Enable auto-instrumentation for specified libraries
  • uninstrument(libraries=None) - Disable auto-instrumentation
  • get_supported_libraries() - Get list of supported library names
  • is_library_available(library) - Check if a library's instrumentation is installed

Client Methods

  • action_context(user_id=None, anonymous_id=None) - Create a context for sending actions
  • ctx.send(action_name, **attributes) - Send an action with custom attributes

Development

Setup

# Clone the repository
git clone https://github.com/valmi-io/value-python.git
cd value-python

# Install dependencies
poetry install

# Install with all extras for development
poetry install --extras all

Running Tests

# Run tests
poetry run pytest

# Run tests with coverage
poetry run pytest --cov=value --cov-report=html

# Run specific test file
poetry run pytest tests/test_client.py

Code Quality

# Format code
poetry run black src/ tests/

# Lint code
poetry run ruff check src/ tests/

# Type check
poetry run mypy src/

Publishing

The package is automatically published to PyPI when a new release is created on GitHub.

Manual Publishing

# Build the package
poetry build

# Publish to TestPyPI (for testing)
poetry publish -r testpypi

# Publish to PyPI
poetry publish

License

MIT License - see LICENSE for details.

Contributing

Contributions are welcome! Please read our Contributing Guide for details.

Links

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •