Skip to content

Python Codes. Google Colab essential codes, data visualization, outlier treatment.

Notifications You must be signed in to change notification settings

navi1910/Frequently.used.Python.Codes-DataScience

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Standardizing continuous numerical features

continuous_columns = data.select_dtypes(include=['float64']).columns.tolist()

  • scaler = StandardScaler()
  • scaled_features = scaler.fit_transform(data[continuous_columns])

Converting to a DataFrame

scaled_df = pd.DataFrame(scaled_features, columns=scaler.get_feature_names_out(continuous_columns))

Combining with the original dataset

scaled_data = pd.concat([data.drop(columns=continuous_columns), scaled_df], axis=1)

Frequently Used Codes.

Identifying categorical columns

  • categorical_columns = scaled_data.select_dtypes(include=['object']).columns.tolist()
  • categorical_columns.remove('NObeyesdad') # Exclude target column

Applying one-hot encoding

  • encoder = OneHotEncoder(sparse_output=False, drop='first')
  • encoded_features = encoder.fit_transform(scaled_data[categorical_columns])

Converting to a DataFrame

encoded_df = pd.DataFrame(encoded_features, columns=encoder.get_feature_names_out(categorical_columns))

Combining with the original dataset

prepped_data = pd.concat([scaled_data.drop(columns=categorical_columns), encoded_df], axis=1)

Encoding the target variable

  • prepped_data['NObeyesdad'] = prepped_data['NObeyesdad'].astype('category').cat.codes
  • prepped_data.head()

  • I uses these codes alot and this repository works like a library.
  • Codes that are essential to train Neural Networks and use Google Colab are listed.
  • Code used for outlier treatment.
  • Basic python data visualization code.

About

Python Codes. Google Colab essential codes, data visualization, outlier treatment.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published