Skip to content

mom1/dddkit

Repository files navigation

DDDKit

DDDKit

PyPI Python Version PyPI - Downloads

Gitmoji Ruff UV

GitHub issues GitHub stars GitHub Release Date GitHub commits since latest release GitHub last commit GitHub license

Kit for using DDD (Domain-Driven Design) tactical patterns in Python.

Table of Contents

Overview

dddkit is a Python library designed to facilitate the implementation of Domain-Driven Design tactical patterns. It provides base classes and utilities for common DDD concepts such as Aggregates, Entities, Value Objects, Domain Events, and Repositories.

The library offers both dataclasses and pydantic implementations of DDD patterns to accommodate different project needs and preferences.

Features

  • Aggregate: Base class for DDD aggregates with event handling capabilities
  • Entity: Base class for entities with identity
  • ValueObject: Base class for value objects without identity
  • Domain Events: Support for domain event creation and handling
  • Event Brokers: Synchronous and asynchronous event brokers for event processing
  • Repositories: Base repository pattern implementation
  • Changes Handler: Mechanism to handle aggregate changes and events
  • Stories: A pattern for defining and executing sequential business operations with hooks and execution tracking

Installation

Prerequisites

This project uses uv for Python and dependency management. Install it first:

curl -LsSf https://astral.sh/uv/install.sh | sh

Or with brew on macOS:

brew install uv

Installing dddkit

Install with uv from PyPI:

uv pip install dddkit

Or with pip:

pip install dddkit

For Development

To set up the development environment:

# Clone the repository
git clone https://github.com/mom1/dddkit.git

# Navigate to the project directory
cd dddkit

# Install dependencies
make install

Usage

Basic Usage

The library provides two implementations of DDD patterns:

  1. dataclasses: Using Python's built-in dataclasses
  2. pydantic: Using the pydantic library (optional dependency)

Using dataclasses implementation

from typing import NewType
from dataclasses import dataclass, field
from dddkit.dataclasses import Aggregate, Entity

ProductName = NewType('ProductName', str)
ProductId = NewType('ProductId', int)
BasketId = NewType('BasketId', int)


@dataclass(kw_only=True)
class Product(Entity):
  product_id: ProductId
  name: ProductName
  amount: float = 0


@dataclass(kw_only=True)
class Basket(Aggregate):
  basket_id: BasketId
  items: dict[ProductId, Product] = field(default_factory=dict)

  @classmethod
  def new(cls, basket_id: BasketId):
    return cls(basket_id=basket_id)

  def add_item(self, item: Product):
    if _item := self.items.get(item.product_id):
      _item.amount = item.amount


# Use repositories and event handling
from dddkit.dataclasses import Repository


class BasketRepository(Repository[Basket, BasketId]):
  """Repository for basket"""

Using pydantic implementation

First install the optional pydantic dependency:

uv pip install dddkit[pydantic]
from typing import NewType
from dddkit.pydantic import Aggregate, Entity, AggregateEvent
from pydantic import Field

ProductName = NewType('ProductName', str)
ProductId = NewType('ProductId', int)
BasketId = NewType('BasketId', int)


class Product(Entity):
  product_id: ProductId
  name: ProductName
  amount: float = 0


class Basket(Aggregate):
  basket_id: BasketId
  items: dict[ProductId, Product] = Field(default_factory=dict)

  @classmethod
  def new(cls, basket_id: BasketId):
    return cls(basket_id=basket_id)

  def add_item(self, item: Product):
    if _item := self.items.get(item.product_id):
      _item.amount = item.amount


# Use repositories and event handling
from dddkit.pydantic import Repository


class BasketRepository(Repository[Basket, BasketId]):
  """Repository for basket"""

Aggregate Events

from typing import NewType
from dataclasses import dataclass, field
from dddkit.dataclasses import Aggregate, Entity, AggregateEvent

ProductName = NewType('ProductName', str)
ProductId = NewType('ProductId', int)
BasketId = NewType('BasketId', int)


@dataclass(kw_only=True)
class Product(Entity):
  product_id: ProductId
  name: ProductName
  amount: float = 0


@dataclass(kw_only=True)
class Basket(Aggregate):
  basket_id: BasketId
  items: dict[ProductId, Product] = field(default_factory=dict)

  @dataclass(frozen=True, kw_only=True)
  class Created(AggregateEvent):
    """Basket created event"""

  @dataclass(frozen=True, kw_only=True)
  class AddedItem(AggregateEvent):
    item: Product

  @classmethod
  def new(cls, basket_id: BasketId):
    basket = cls(basket_id=basket_id)
    basket.add_event(cls.Created())
    return basket

  def add_item(self, item: Product):
    if _item := self.items.get(item.product_id):
      _item.amount = item.amount
      self.add_event(self.AddedItem(item=_item))

Event Handling

from dddkit.dataclasses import EventBroker

handle_event = EventBroker()


# sync

@handle_event.handle(ProductCreated)
def _(event: ProductCreated):
  # Handle the event
  print(f"Product {event.name} created with ID {event.product_id}")


product_event = ProductCreated(product_id=ProductId("123"), name="Test Product")


def context():
  handle_event(product_event)


# Or async

@handle_event.handle(ProductCreated)
async def _(event: ProductCreated):
  # Handle the event
  print(f"Product {event.name} created with ID {event.product_id}")


async def context():
  await handle_event(product_event)

Stories

Stories provide a pattern for defining sequential business operations with optional hooks for execution tracking, logging, and timing.

Note: The stories implementation in DDDKit was inspired by and uses parts of the work from proofit404/stories.

Basic Story Usage

from dataclasses import dataclass
from dddkit.stories import I, Story
from types import SimpleNamespace


@dataclass(frozen=True, slots=True)
class ShoppingCartStory(Story):
  # Define the steps in the story
  I.add_item
  I.apply_discount
  I.calculate_total

  class State(SimpleNamespace):
    items: list = []
    discount: float = 0.0
    total: float = 0.0

  def add_item(self, state: State):
    state.items.append({"name": "Product A", "price": 10.0})

  def apply_discount(self, state: State):
    if len(state.items) > 1:
      state.discount = 0.1  # 10% discount

  def calculate_total(self, state: State):
    subtotal = sum(item["price"] for item in state.items)
    state.total = subtotal * (1 - state.discount)


# Execute the story
story = ShoppingCartStory()
state = story.State()
story(state)

print(f"Items: {state.items}")
print(f"Discount: {state.discount}")
print(f"Total: {state.total}")

Stories with Async Operations

Stories support both synchronous and asynchronous operations:

import asyncio
from dataclasses import dataclass
from dddkit.stories import I, Story
from types import SimpleNamespace


@dataclass(frozen=True, slots=True)
class AsyncProcessingStory(Story):
  I.fetch_data
  I.process_data
  I.save_result

  class State(SimpleNamespace):
    raw_data: str = ""
    processed_data: str = ""
    saved: bool = False

  async def fetch_data(self, state: State):
    # Simulate async data fetching
    await asyncio.sleep(0.1)
    state.raw_data = "some raw data"

  def process_data(self, state: State):
    state.processed_data = state.raw_data.upper()

  async def save_result(self, state: State):
    # Simulate async saving
    await asyncio.sleep(0.05)
    state.saved = True


# Execute the async story
async def run_async_story():
  story = AsyncProcessingStory()
  state = story.State()
  await story(state)
  return state

# asyncio.run(run_async_story())

Stories with Hooks

Stories support hooks for execution tracking, logging, and performance monitoring:

from dataclasses import dataclass
from dddkit.stories import I, Story, inject_hooks, ExecutionTimeTracker, StatusTracker, LoggingHook
from types import SimpleNamespace


@dataclass(frozen=True, slots=True)
class HookedStory(Story):
  I.step_one
  I.step_two
  I.step_three

  class State(SimpleNamespace):
    step_one_completed: bool = False
    step_two_completed: bool = False
    step_three_completed: bool = False

  def step_one(self, state: State):
    state.step_one_completed = True

  def step_two(self, state: State):
    state.step_two_completed = True

  def step_three(self, state: State):
    state.step_three_completed = True


# Inject default hooks (StatusTracker, ExecutionTimeTracker, LoggingHook)
story_class = HookedStory
inject_hooks(story_class)

# Execute the story with hooks
story = story_class()
state = story.State()
story(state)
# At the DEBUG log level, you will see the process of executing story steps.
HookedStory:
    ⟳I.step_one
    I.step_two
    I.step_three
HookedStory:
    ✓I.step_one [0.000s]
    ⟳I.step_two
    I.step_three
HookedStory:
    ✓I.step_one [0.000s]
    ✓I.step_two [0.001s]
    ⟳I.step_three
# If an error occurs during the execution of a story, it will look like this
HookedStory:
    ✓I.step_one [0.000s]
    ✓I.step_two [0.001s]
    ✗I.step_three
Traceback (most recent call last):
  File "/your_file.py", line 115, in your_function
  ...
exceptions.YourException

Stories provide three types of hooks:

  • before: Runs before each step
  • after: Runs after each step (even if exceptions occur)
  • error: Runs when an exception occurs in a step

You can also create custom hooks:

from dddkit.stories import StoryExecutionContext, StepExecutionInfo, inject_hooks


class CustomHook:
  def before(self, context: StoryExecutionContext, step_info: StepExecutionInfo):
    print(f"Starting step: {step_info.step_name}")

  def after(self, context: StoryExecutionContext, step_info: StepExecutionInfo):
    print(f"Completed step: {step_info.step_name}")

  def error(self, context: StoryExecutionContext, step_info: StepExecutionInfo):
    print(f"Error in step: {step_info.step_name}, Error: {step_info.error}")


# Inject custom hooks
inject_hooks(HookedStory, hooks=[CustomHook()])

Prometheus Integration

DDDKit provides comprehensive Prometheus integration through specialized metrics hooks that collect and expose metrics for story execution, providing observability and performance monitoring for your DDDKit story operations.

Available Hook Classes

DDDKit offers two Prometheus metrics hooks depending on your application's needs:

  1. dddkit.stories.prometheus.hook.PrometheusMetricsHook: Uses the standard prometheus_client library
  2. dddkit.stories.aioprometheus.hook.PrometheusMetricsHook: Uses the aioprometheus library for asynchronous environments

Installation

For the standard Prometheus hook, install the optional prometheus dependency:

uv pip install dddkit[prometheus]

Or with pip:

pip install dddkit[prometheus]

For the async-friendly hook, install the aioprometheus dependency:

uv pip install dddkit[aioprometheus]

Or with pip:

pip install dddkit[aioprometheus]

Standard Prometheus Hook

The PrometheusMetricsHook from the dddkit.stories.prometheus module uses the standard prometheus_client library.

Usage

from dataclasses import dataclass
from dddkit.stories import I, Story, inject_hooks
from dddkit.stories.prometheus import PrometheusMetricsHook
from types import SimpleNamespace


@dataclass(frozen=True, slots=True)
class MonitoredStory(Story):
  I.step_one
  I.step_two
  I.step_three

  class State(SimpleNamespace):
    step_one_completed: bool = False
    step_two_completed: bool = False
    step_three_completed: bool = False

  def step_one(self, state: State):
    state.step_one_completed = True

  def step_two(self, state: State):
    state.step_two_completed = True

  def step_three(self, state: State):
    state.step_three_completed = True


# Create an instance of PrometheusMetricsHook
prometheus_hook = PrometheusMetricsHook(
  app_name="my_app",
  prefix="my_service",
  labels={"env": "production", "version": "1.0.0"},
  buckets=[5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000]  # in milliseconds
)

# Inject the hook into your story class
inject_hooks(MonitoredStory, hooks=[prometheus_hook])

# Execute the story
story = MonitoredStory()
state = story.State()
story(state)

Configuration Options

The standard PrometheusMetricsHook class accepts the following configuration parameters:

  • app_name (str, default: 'dddkit_stories'): The name of the service to use in the metrics
  • prefix (str, default: 'dddkit_stories'): The prefix to use for the metrics
  • labels (dict[str, str], default: {}): A mapping of labels to add to the metrics
  • buckets (list[str | float] | None, default: None): A list of buckets to use for the histogram. If not provided, defaults to [10, 25, 50, 100, 300, 500, 1000, 2000, 5000, 10000] milliseconds

AIOPrometheus Hook

The PrometheusMetricsHook from the dddkit.stories.aioprometheus module uses the aioprometheus library and is more suitable for asynchronous applications.

Usage

from dataclasses import dataclass
from dddkit.stories import I, Story, inject_hooks
from dddkit.stories.aioprometheus import PrometheusMetricsHook
from types import SimpleNamespace


@dataclass(frozen=True, slots=True)
class AsyncMonitoredStory(Story):
  I.step_one
  I.step_two
  I.step_three

  class State(SimpleNamespace):
    step_one_completed: bool = False
    step_two_completed: bool = False
    step_three_completed: bool = False

  def step_one(self, state: State):
    state.step_one_completed = True

  def step_two(self, state: State):
    state.step_two_completed = True

  def step_three(self, state: State):
    state.step_three_completed = True


# Create an instance of AIOPrometheusMetricsHook
prometheus_hook = PrometheusMetricsHook(
  app_name="my_async_app",
  prefix="my_async_service",
  labels={"env": "production", "version": "1.0.0"},
  buckets=[5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000]  # in milliseconds
)

# Inject the hook into your story class
inject_hooks(AsyncMonitoredStory, hooks=[prometheus_hook])

# Execute the story
story = AsyncMonitoredStory()
state = story.State()
story(state)

Configuration Options

The AIOPrometheusMetricsHook class accepts similar configuration parameters:

  • app_name (str, default: 'dddkit_stories'): The name of the service to use in the metrics
  • prefix (str, default: 'dddkit_stories'): The prefix to use for the metrics
  • labels (dict[str, str], default: {}): A mapping of labels to add to the metrics
  • buckets (list[float] | None, default: None): A list of buckets to use for the histogram. If not provided, defaults to [10.0, 25.0, 50.0, 100.0, 300.0, 500.0, 1000.0, 2000.0, 5000.0, 10000.0] milliseconds

Common Metrics Exposed

Both Prometheus hooks expose the following Prometheus metrics:

  • dddkit_stories_executions_latency_ms - Histogram metric tracking total story execution time

    • Labels: service, story_name, status, and any custom labels
    • Help text: "Story Execution Time"
  • dddkit_stories_step_executions_latency_ms - Histogram metric tracking individual step execution time

    • Labels: service, story_name, step_name, status, and any custom labels
    • Help text: "Story step execution time"

Key Differences

The main difference between the two hooks is the underlying Prometheus library they use:

  • Standard hook uses prometheus_client library and is suitable for synchronous applications
  • AIOPrometheus hook uses aioprometheus library and provides better integration with async frameworks

Grafana Dashboards

Example Grafana dashboards are provided in the .grafana folder to visualize the metrics exposed by the Prometheus hooks, along with screenshot previews:

  • stories-execution-dashboard.json - Dashboard showing overall story execution metrics including success rate, total executions, execution status, latency percentiles, and execution trends over time
  • stories-steps-execution-dashboard.json - Dashboard showing detailed metrics for individual story steps including step duration, execution count, latency percentiles, and error tracking
  • stories.png - Screenshot preview of the stories execution dashboard
  • stories_steps.png - Screenshot preview of the stories steps execution dashboard

These screenshots provide visual examples of what the dashboards look like when properly configured with Prometheus metrics from DDDKit stories.

Project Structure

src/dddkit/
├── __init__.py
├── dataclasses/        # DDD patterns using dataclasses
│   ├── __init__.py
│   ├── aggregates.py
│   ├── changes_handler.py
│   ├── events.py
│   └── repositories.py
├── pydantic/          # DDD patterns using pydantic
│   ├── __init__.py
│   ├── aggregates.py
│   ├── changes_handler.py
│   ├── events.py
│   └── repositories.py
└── stories/           # Stories pattern for sequential operations
    ├── __init__.py
    ├── story.py       # Core Story implementation
    └── hooks.py       # Hook implementations for stories

Contributing

Contributions are welcome! Here's how you can get started:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests if applicable
  5. Run the test suite (make test)
  6. Commit your changes (git commit -m 'Add amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

Development Commands

make install    # Install dependencies
make test       # Run tests
make lint       # Run linter
make format     # Run formatter
make build      # Build the package

License

This project is licensed under the MIT License - see the LICENSE file for details.

Development Status

This project is in production/stable state. All contributions and feedback are welcome.

About

Kit for using DDD tactical patterns

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •