Skip to content
View galafis's full-sized avatar
  • Brazil
  • 18:35 (UTC -03:00)

Block or report galafis

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
galafis/README.md

Gabriel Demetrios Lafis

Portugues | English


Portugues

Sobre

Formado em Ciencia de Dados, baseado no Brasil. Trabalho com analise de dados, machine learning e engenharia de dados, com foco em aplicacoes para mercados financeiros e trading quantitativo.

Principais Areas

  • Trading Quantitativo & Financas -- backtesting de estrategias, analise tecnica, modelos de predicao de precos e volatilidade, gestao de risco
  • Machine Learning & Data Science -- classificacao, regressao, deteccao de anomalias, NLP, sistemas de recomendacao, forecasting de series temporais
  • Engenharia de Dados -- pipelines ETL, processamento distribuido, data quality, feature stores
  • Desenvolvimento de APIs -- APIs REST com FastAPI, microsservicos, autenticacao JWT

Tecnologias

Linguagens: Python, SQL, R, JavaScript, TypeScript, Rust, Java, Go, Scala, Julia

Data & ML: pandas, NumPy, scikit-learn, XGBoost, LightGBM, TensorFlow, PyTorch, Spark, dbt, Airflow, MLflow

Web & Infra: FastAPI, React, Node.js, Docker, Kubernetes, Terraform, PostgreSQL, Redis

Contato


English

About

Data Science graduate based in Brazil. I work with data analysis, machine learning, and data engineering, focusing on financial markets and quantitative trading applications.

Main Areas

  • Quantitative Trading & Finance -- strategy backtesting, technical analysis, price and volatility prediction models, risk management
  • Machine Learning & Data Science -- classification, regression, anomaly detection, NLP, recommendation systems, time series forecasting
  • Data Engineering -- ETL pipelines, distributed processing, data quality, feature stores
  • API Development -- REST APIs with FastAPI, microservices, JWT authentication

Technologies

Languages: Python, SQL, R, JavaScript, TypeScript, Rust, Java, Go, Scala, Julia

Data & ML: pandas, NumPy, scikit-learn, XGBoost, LightGBM, TensorFlow, PyTorch, Spark, dbt, Airflow, MLflow

Web & Infra: FastAPI, React, Node.js, Docker, Kubernetes, Terraform, PostgreSQL, Redis

Contact

Pinned Loading

  1. Advanced-ML-Pipeline Advanced-ML-Pipeline Public

    Pipeline de ML para classificacao com EDA automatizada, comparacao de 4 modelos (RF, GB, LR, SVM), GridSearchCV e persistencia. Projeto educacional.

    Python 1

  2. ai-financial-fraud-detection ai-financial-fraud-detection Public

    AI-powered fraud detection system for financial transactions. Uses ensemble models, anomaly detection, and real-time scoring to identify fraudulent patterns.

    Python 1

  3. awesome-data-science-toolkit awesome-data-science-toolkit Public

    🚀 Comprehensive toolkit for data scientists with Python utilities, ML algorithms, visualization tools, and best practices. Perfect for beginners and professionals!

    Python 1

  4. genomic-data-analysis-pipeline genomic-data-analysis-pipeline Public

    Advanced data science project: genomic-data-analysis-pipeline

    Python 1

  5. high-frequency-trading-analytics high-frequency-trading-analytics Public

    Real-time analytics platform for high-frequency trading data. Processes tick-level data with ultra-low latency for market microstructure insights and trading performance analysis.

    Python 1