This repository contains the official codebase for our NeurIPS 2025 paper,
“Cost-Sensitive Freeze-Thaw Bayesian Optimization for Efficient Hyperparameter Tuning.”
conda create -n cfbo python=3.11
conda activate cfbo
pip install -r requirements.txtDownload the dataset from this Google Drive link and unzip it into this repository.
(Optional) Pretrain the LC extrapolator for transfer learning:
# BENCHMARK_NAME ∈ ["lcbench", "taskset", "pd1", "odbench"]
python train.py --benchmark_name BENCHMARK_NAMEAlternatively, download pretrained checkpoints from this Google Drive link and unzip them into this repository.
We consider the following utility function:
-
$b$ denotes the currently consumed budget, and$\tilde{y}_b$ denotes the best performance observed up to budget$b$ , -
budget_limit (
$B \in \mathbb{N}$ ): the maximum allowable optimization budget, -
alpha (
$\alpha \in [0,1]$ ): the penalty coefficient for budget consumption ($\alpha = 0$ recovers conventional BO), -
c (
$c > 0$ ): controls the curvature of the utility function (e.g.,$c=1$ for linear,$c=2$ for quadratic,$c=0.5$ for square-root).
Run BO:
# BENCHMARK_NAME ∈ ["lcbench", "taskset", "pd1", "odbench"]
# DyHPO
python run_bo.py --algorithm dyhpo --benchmark_name BENCHMARK_NAME --alpha ALPHA --c C
# ifBO
python run_bo.py --algorithm ifbo --benchmark_name BENCHMARK_NAME --alpha ALPHA --c C
# CFBO without transfer learning
python run_bo.py --algorithm CFBO --benchmark_name BENCHMARK_NAME --alpha ALPHA --c C
# CFBO with transfer learning
python run_bo.py --algorithm CFBO --benchmark_name BENCHMARK_NAME --alpha ALPHA --c C \
--model_ckpt ./checkpoints/BENCHMARK_NAME/model.pt@inproceedings{CFBO,
title={Cost-Sensitive Freeze-thaw Bayesian Optimization for Efficient Hyperparameter Tuning},
author={Lee, Dong Bok and Zhang, Aoxuan Silvia and Kim, Byungjoo and Park, Junhyeon and Adriaensen, Steven and Lee, Juho and Hwang, Sung Ju and Lee, Hae Beom},
booktitle={The Thirty-Ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={https://openreview.net/pdf?id=ZUb4JpNoJe}
}