Hands-on NumPy tutorial with Jupyter notebooks covering array operations, array creation, indexing, broadcasting, mathematical operations, and real-world NumPy examples. Perfect NumPy crash course for data scientists, ML engineers, and Python developers mastering NumPy fundamentals to advanced array operations!
git clone https://github.com/Wcoder547/Numpy.git
cd Numpy
pip install numpy jupyter matplotlib
jupyter notebook basic.ipynb # Start learning!| Notebook | Topic | Key Concepts |
|---|---|---|
basic.ipynb |
NumPy Fundamentals | Arrays, dtype, shape, size |
Array-operations.ipynb |
Array Operations | Math ops, broadcasting, ufuncs |
practise.ipynb |
Practice Exercises | Real-world problems |
last_part.ipynb |
Advanced Topics | Advanced indexing, views vs copies |
Sample NumPy arrays included: array1.npy, array2.npy, array3.npy, numpy-logo.npy
✅ Array Creation: np.array(), np.zeros(), np.ones(), np.arange()
✅ Array Attributes: shape, dtype, ndim, size
✅ Indexing & Slicing: Basic + Advanced (boolean, fancy)
✅ Mathematical Operations: Element-wise, matrix ops
✅ Broadcasting Rules & Universal Functions (ufuncs)
✅ Array Manipulation: reshape, transpose, concatenate
✅ Views vs Copies (Memory management)
✅ Statistical Functions: mean, std, min, max
✅ Real-world datasets & practice problems
✅ Performance optimization techniques
Core: NumPy 2.0+, Python 3.11+
Visualization: Matplotlib (optional)
Format: Jupyter Notebooks (.ipynb) + .npy files
Numpy/
├── basic.ipynb # NumPy fundamentals
├── Array-operations.ipynb # Complete array operations
├── practise.ipynb # Hands-on exercises
├── last_part.ipynb # Advanced topics
├── array1.npy # Sample dataset 1
├── array2.npy # Sample dataset 2
├── array3.npy # Sample dataset 3
├── numpy-logo.npy # NumPy logo array
└── README.md
1. basic.ipynb (30min) → Core concepts
2. Array-operations.ipynb → Math + Broadcasting
3. practise.ipynb → Apply knowledge
4. last_part.ipynb → Advanced techniques
# Array creation
import numpy as np
arr = np.array([1, 2, 3, 4])
zeros = np.zeros((3, 3))
# Broadcasting
arr + 10 # [11, 12, 13, 14]
# Statistical operations
np.mean(arr), np.std(arr), arr.shape- Data Science beginners learning NumPy foundations
- ML engineers needing fast array operations
- Python developers optimizing numerical code
- Interview prep for NumPy questions
- Academic projects requiring array computations
1. Fork → Clone → Branch
2. Add notebook → Test → Commit
3. Push → PR with description
4. Follow NumPy style guidelinesWasim Akram – Data Scientist | ML Engineer | Python Expert
Email: malikwaseemshzad@gmail.com