Temporal dependency propagation and root-cause analysis for OSS ecosystems
-
cause: causality analysis part, implementation of custom DAS, the code to generate two files with CVE related features (one-hop neighbor, two-hop neighbor)
-
cent: three centrality measurement methods: degree (three directions), betweenness, and eigenvector
-
data: extracted other format data sets
-
exp: the exploration code on different files, code to call diverse centrality measurement, notebooks to visualize data and perform stastical analysis
-
process: the code to call neo4j and export other formats of graphs, like graphml and csv
- How to install Goblin Weaver
java -Dneo4jUri="bolt://localhost:7687/" -Dneo4jUser="neo4j" -Dneo4jPassword="password" -jar goblinWeaver-2.1.0.jar
- configuration of neo4j.conf: add the following lines to conf file to enable apoc output
dbms.security.procedures.unrestricted=apoc.*
dbms.security.procedures.allowlist=apoc.*
apoc.export.file.enabled=true
- run script:
# export dump into graphml and csv formats
python3 data_export.py
(tested on macOS and Ubuntu 20.04.5 LTS for small-scale data)
# configure virtualenv environment
curl https://pyenv.run | bash
export PYENV_ROOT="$HOME/.pyenv"
[[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
# specify python version
pyenv install 3.10
pyenv global 3.10
# create local environment
pyenv virtualenv 3.10 GraphSec-Flow
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
pyenv activate GraphSec-Flow
# upgrade building tools - avoid compatibility problem
python -m pip install -U pip setuptools wheel build
sudo apt-get update
sudo apt-get install -y build-essential libffi-dev libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev liblzma-dev tk-dev uuid-dev
# download dependencies
pip3 install -r requirements.txt
- generate cve enriched dependency graph
cd cve
python3 graph_cve.py --dep_graph {your local path}/data/dep_graph.pkl --cve_json {your local path}/data/aggregated_data.json --nodes_pkl {your local path}/data/graph_nodes_edges.pkl --augment_graph {your local path}/data/dep_graph_cve.pkl
- generate ground truth data
python3 gt_builder.py --dep-graph /workspace/GraphSec-Flow/data/dep_graph_cve.pkl --cve-meta /workspace/GraphSec-Flow/data/cve_records_for_meta.pkl --out-root /workspace/GraphSec-Flow/data/root_causes.jsonl --out-paths /workspace/GraphSec-Flow/data/ref_paths.jsonl
- Root Cause Analysis
python3 root_ana.py --cve_id "CVE-2017-5650"
- Root Cause Path Analysis
python3 path_track.py --aug_graph /workspace/GraphSec-Flow/data/dep_graph_cve.pkl --paths_jsonl /workspace/GraphSec-Flow/result/result.json --subgraph_gexf /workspace/GraphSec-Flow/result/result.gexf --t_start 1021437154000 --t_end 1724985046000
- Benchmark
python3 benchmark.py --ref-layer /workspace/GraphSec-Flow/data/ref_paths_layer_full_6.jsonl
We build a silver ground truth for evaluation using (i) earliest-affected release selection from OSV/NVD metadata and (ii) a time-respecting, depth-bounded traversal to generate reference propagation edges. This GT is inferred (not manually verified).
Input: vulnerability metadata (affected ranges R, optional fixing commits F, publication time), dependency graph G
Output: inferred root-cause release node r
- Resolve package id
pfrom the advisory (name / repo URL). - Normalize semantic versions in affected ranges
R. - Collect candidate releases
S = { s in G | package(s)=p and version(s) in R }. - For each
s in S, get release timet(s). - Return
r = argmin_{s in S} t(s).
Input: root r, graph G, max depth d_max
Output: reference edge set P
- Initialize queue
Q = [(r,0)], setP = ∅. - While
Qnot empty:- Pop
(u,d). Ifd == d_max, continue. - For each downstream dependent release
vofuinG:- If
release_time(v) >= release_time(u):- Add edge
(u → v)toP - Push
(v, d+1)intoQ
- Add edge
- If
- Pop
- Return
P
See docs/ground_truth.md for the full LaTeX version and validation checks.





