Skip to content

SearchScale/vectorsearch-benchmarks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

118 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vector Search Benchmarks

Benchmark system for comparing CAGRA (GPU) vs Lucene HNSW (CPU) vector search algorithms.

Setup

  1. Prerequisites:

    • JDK 22+
    • CUDA libraries
    • Python 3.7+
    • pip install pyyaml matplotlib numpy click pandas
  2. Set library paths:

    export LD_LIBRARY_PATH="/path/to/cuvs/build:/path/to/cuda/lib64:/path/to/conda/lib:$LD_LIBRARY_PATH"

Run benchmark

cuVS-Lucene benchmarks

./run_sweep.sh --data-dir /data2/vsbench-datasets --datasets datasets.json --sweeps sweeps.json --configs-dir configs --results-dir results --run-benchmarks

Solr benchmarks

./run_sweep.sh --data-dir /data2/vsbench-datasets --datasets datasets.json --mode solr --sweeps solr-sweeps.json --configs-dir configs --results-dir results --run-benchmarks

It builds Apache Solr's main branch and runs the benchmarks.

Adding Datasets

Edit datasets.json:

Creating Sweeps

Edit (or copy+edit) sweep.json:

Visualization

./run_pareto_analysis.sh (already called in run_sweep.sh) example: ./run_pareto_analysis.sh 3cNWY5 wiki10m

Serve the webui on port 8000:

cd web-ui-new; python3 -m http.server

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •